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Abstract: This paper presents an investigation on the scale effects associated with the powering
performance of a Gate Rudder System (GRS) which was recently introduced as a novel energy-saving
propulsion and maneuvring device. This new system was applied for the first time on a 2400 GT
domestic container ship, and full-scale sea trials were conducted successfully in Japan, in 2017.
The trials confirmed the superior powering and maneuvring performance of this novel system.
However, a significant discrepancy was also noticed between the model test-based performance
predictions and the full-scale measurements. The discrepancy was in the power-speed data and also
in the maneuvring test data when these data were compared with the data of her sister container ship
which was equipped with a conventional flap rudder. Twelve months after the delivery of the vessel
with the gate rudder system, the voyage data revealed a surprisingly more significant difference in
the powering performance based on the voyage data. The aim of this paper, therefore, is to take
a further step towards an improved estimation of the powering performance of ships with a GRS
with a specific emphasis on the scale effect issues associated with a GRS. More specifically, this study
investigated the scale effects on the powering performance of a gate rudder system based on the
analyses of the data from two tank tests and full-scale trials with the above-mentioned sister ships.
The study focused on the corrections for the scale effects, which were believed to be associated with
the drag and lift characteristics of the gate rudder blades due to the low Reynolds number experienced
in model tests combined with the unique arrangement of this rudder and propulsion system. Based
on the appropriate semi-empirical approaches that support model test and full-scale data, this study
verified the scale effect phenomenon and presented the associated correction procedure. Also, this
study presented an enhanced methodology for the powering performance prediction of a ship driven
by a GRS implementing the proposed scale effect correction. The predicted powering performance of
the subject container vessel with the GRS presented an excellent agreement with the full-scale trials
data justifying the claimed scale effect and associated correction procedure, as well as the proposed
enhanced methodology for the practical way of predicting the powering performance of a ship with
the GRS.

Keywords: gate rudder system; flap rudder; energy saving device; ducted propeller; maneuvring
device; powering performance; scale effects; laminar separation

1. Introduction

1.1. Gate Rudder System

A gate rudder system (GRS) is a rather novel but straightforward arrangement of the ship rudder
and propeller to act as an attractive and sound energy-saving propulsion and maneuvring device
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(ESMD), for example, [1–3]. In this system, the classical single-rudder behind the propeller arrangement
is replaced by twin-rudder blades with asymmetric cross-sections which are positioned on either side
of the propeller. The two rudder blades encircle the propeller at the upper half of the propeller plane,
as well as at both sides, such as a separated duct which is split into two sections with no bottom
part. The arrangement of the gate rudder system (GRS) on the “Shigenobu” is shown in Figure 1a
(left) in contrast to the conventional (flap-) rudder system (CRS) of the “Sakura” in Figure 1b (right).
Shigenobu has the world’s first GRS installed on it while her sister ship (Sakura) has a conventional
rudder system (CRS) with the same hull and engine particulars. The principal dimensions of both
vessels are presented in Table 1, Sasaki et al. (2019) [4].
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Figure 1. (a) Gate rudder system (GRS) on coastal container ship “Shigenobu.” and (b) conventional
flap-rudder system (CRS) on sister container ship “Sakura.”.

Table 1. Principal characteristics of Shigenobu and Sakura.

Particulars Sakura Shigenobu

Length OA (m) 111.4

Beam (m) 17.8

Draft (m) 5.24

Main Engine 3309 kW × 220 rpm

Rudder Flap rudder Gate rudder

Delivery August 2016 December 2017

Each rudder blade of the GRS can be controlled individually to affect the direction of the propeller’s
slipstream (i.e., to vector), and hence to steer the vessel with increased maneuvring and motion control
capability. The GRS, therefore, takes advantage of additional thrust generated by the two rudder
blades, in contrast to the extra resistance that results from the conventional rudder. This is somewhat
similar to the ducted propulsor but with a much larger propeller diameter as compared with the
traditional ducted propeller with less surface area, and hence improves the efficiency significantly.
The GRS, therefore, can be categorized as a new “open-type ducted propeller” which is distinct from a
conventional “closed-type ducted propeller” (e.g., Kort Nozzle) and a “front-type ducted propeller”
(e.g., the Becker Mewis Duct or SILD and Sumitomo Integrated Lammern Duct), as shown in Figure 2.
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The service performances of these sister ships, which operate on the same route and almost 
follow each other’s path with the same mission in the northeast coast of Japan, are investigated based 
on the ship owner’s standard logbook. This logbook continuously recorded the mean values of the 
important key performance indicators, such as ship speed, power, and fuel consumption for both 
vessels, since Nov 2017. As shown in Figures 3a and 4, the plot of the logbook data for powering and 
fuel consumption, respectively, indicates that the gain in performance for the ship with the GRS was 
as high as 30% or more than her sister ship with the conventional rudder system (CRS) [2,3]. 

Figure 2. Kort nozzle (a), Becker Mewis Duct (b), and gate rudder system (c).

The foundation of a GRS is based on the originating activities, in Japan, to improve the
maneuverability of coastal vessels which require tighter control of ships in their transverse motions at
ports. This propulsion and maneuvering device was further developed by the recent R&D activities in
the UK, e.g., Sasaki et al. (2015, 2018, 2017, 2019) [1,4–6]. The GRS was applied for the first time on a 2400
GT full-scale, new-built coastal container “Shigenobu”, which was entered into service on November
2017. This was to demonstrate the vessel’s performance, especially her excellent maneuverability
performance. The comprehensive speed and maneuvering trials with this vessel and her sister ship
“Sakura”, indicated that the vessel with GRS was 14% more efficient at the design speed than her
sister’s while the gain in service can be as high as 30% in rough seas, as shown in Figure 3.
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Figure 3. Powering performance comparisons of two sister ships, one with a gate rudder system and
the other with a conventional flap-rudder system: In trials (a) and in-service (b).

The service performances of these sister ships, which operate on the same route and almost
follow each other’s path with the same mission in the northeast coast of Japan, are investigated based
on the ship owner’s standard logbook. This logbook continuously recorded the mean values of the
important key performance indicators, such as ship speed, power, and fuel consumption for both
vessels, since Nov 2017. As shown in Figures 3a and 4, the plot of the logbook data for powering and
fuel consumption, respectively, indicates that the gain in performance for the ship with the GRS was as
high as 30% or more than her sister ship with the conventional rudder system (CRS) [2,3].
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1.2. Scale Effects

While the main remarkable features of a GRS are highlighted in the previous section (Section 1.1),
it should be asked “why did no one think of the GRS idea before?” One reason appears to be that the
conventional modelling techniques are not suitable for use in an unconventional propeller-rudder
configuration. It is not easy to say, but it strongly relates to the testing technology and the analysis
procedures. A GRS is not within the scope of the existing model testing and scaling technology.
For example, the resistance of the gate rudder measured in model tests was found to be rather high,
i.e., 5 to 10 times as compared with the full scale due to the suspected scale effects. This gives the
wrong conclusion for the model test results. In fact, the decision to apply a GRS in full scale was taken
in Japan even though the model test results achieved from existing model testing methodologies were
unsupportive and the full-scale performance was remarkably above the predicted gain based upon the
model tests. The comparative result of the power prediction for the world’s first gate rudder system
driven ship, “Shigenobu”, with the trials data using the combined ITTC and Yazaki method [7], can be
seen in Figure 3. As shown in Figure 3a, on the one hand, the conventional prediction method did not
present any gain for the gate rudder system while the full-scale trials of Shigenobu presented a 14%
energy savings. On the other hand, as also shown in Figure 3a, the same method predicted the trial
performance of her sistership “Sakura” with the conventional flap-rudder system very well by raising
the question for ships with the GRS. In fact, this was the major motivation of this paper to explore the
potential scale effects, which may be the reason for the discrepancy between the predictions and the
full-scale data for Shigenobu.

The power prediction of ships based on model tests is one of the main tasks for a towing
tank facility. Within this context, the conduct of tank tests and their analysis procedures have been
historically developed by taking into account not only theoretical approaches but also empirical
model-ship correlation factors to achieve the accurate full-scale power predictions at sea trial. In fact,
the introduction of the turbulence stimulators is the most well-known practice of the towing tanks by
artificially tripping the flow to be turbulent on the model hull surface. However, it is also a well-known
fact that the laminar flow can be experienced over the appendages in the stern region, even within the
thick boundary layers which can be stimulated for turbulent flow by the above-mentioned procedure of
using a turbulence stimulator. It is also true that the turbulence stimulator is not applied to the models
of the conventional rudders because they operate in the propeller slipstream with the accelerated flow
which can suppress the presence of laminar flow and its separation, whereas this may not be true for
the GRS driven models due their different arrangements as will be discussed later.
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In this paper, the reason for the above-mentioned scale effect for the GRS driven ships is explored
and verified by using the model test results of two different size models with the GRS. The aim is
to take a further step towards an improved estimation of the powering performance of ships with
the GRS. The scale effect is associated with the drag and lift characteristics of the gate rudder blades
and correction procedures were proposed based on the semi-empirical approaches supported with
the available model test and full-scale trials data. The suggested scale effect correction was also
implemented in the powering performance prediction method for ships with the GRS and results were
validated with the full-scale trials data for Shigenobu.

2. Scale Effect Prediction for the Gate Rudder System

2.1. Effect of the Rudder Position

As shown in Figure 1a, the gate rudder blades are located on either side of a propeller with large
clearances. Therefore, the flow field surrounding the gate rudder is quite different from that of a
conventional rudder case (Figure 1b) with the following distinct features:

1. The flow field around the gate rudder is rather uniform without any strong disturbance from the
propeller’s slipstream;

2. The magnitude of the average flow speed at the gate rudder blades is close to the ship speed
while the flow has a component in the transverse direction towards the ship’s center plane;

3. The propeller accelerates the flow in the vicinity of the rudder blades and the top dead center
position of the propeller where the high wake zone (or wake shadow) is observed, as in the case
of a conventional rudder;

4. Larger transverse flow and, hence, the lift on the rudder blades are generated by the propeller’s
action which increases the thrust of the GRS.

The difference in the flow field between the model and full scale depends on the model size. If the
model length (LM) is not large enough (i.e., LM < 12 m), the flow around the gate rudder blades has the
possibility of being laminar and even developing a laminar flow separation because of their locations
and that of the large thickness to chord ratio for the rudder blades. This is expected to result in the
scale effect for the gate rudder blades. In fact, the scale effect of the rudder drag should be considered
not only for the gate rudder but also for the conventional rudder. However, one can only appreciate
the difference clearly if the comparisons of the flow characteristics are made based on the real case [5].

2.2. Drag Coefficients in Model and Full Scale

The resistance of a rudder blade, FRX, and the side force (lift), FRY, can be represented by Equations
(1) and (2) as follows:

FRX = FRD cos(α) − FRL sin(α) (1)

FRY = FRD sin(α) + FRL cos(α) (2)

where, FRD and FRL is the contribution from the rudder drag and the rudder lift, respectively and α is
the angle of attack of the rudder wing section to the flow. FRL is negligibly small for the conventional
rudder case except for the condition behind a rotating propeller.

FRD can be predicted by the empirical formula given by Equation (3) when the flow velocity and
rudder geometry is given.

FRD =
1
2
ρ

∫ H

0
Vo(z)

2CF(z) ∗

1 +
t(z)
c(z)

+ (
t(z)
c(z)

)
2 (3)

where Vo and CF are the local flow velocity and frictional resistance coefficient, respectively,
corresponding to flow direction and flow characteristics (laminar or turbulent, etc.) at z position and
t/c is the thickness-chord ratio in the same position.
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Here, the drag coefficient of a rudder can be represented by Equation (4) using ship speed and
rudder area SR.

CRD =
FRD

1
2ρVS2SR

(4)

It should also be noted that each of the resistance components obeys a different set of scaling laws
and the problem of scaling can become more complicated because of the interaction between these
components. Therefore, we explore the scale effect of the rudder drag by using data belonging to the
gate rudder system of the Shigenobu, as described in the following:

Using Equation (3) the rudder drag was calculated for the gate rudder and the conventional rudder
and results are presented as a comparison in Tables 2 and 3 for the model and full scale, respectively.
The comparative results are also presented in Figure 5. The values in Figure 5 and Tables 2 and 3 are
nondimensionalized by the measured ship resistance. To avoid confusion, it should be highlighted
that the resultant rudder drag is different from these figures for the GRS because of the lift force acting
on the rudder blades. The thrust (i.e., negative resistance) of gate rudder is quite often seen, even in
the towing condition.

Table 2. Rudder drag calculations (in model scale).

Parameters Flap Rudder Gate Rudder

SR 100% 157%

meanV0 (model) 0.40 0.98

CF (model) 0.00944 0.00700

CRD (model) 0.0095 0.0405

% of ship resistance 0.8 5.3

Table 3. Rudder drag calculations (in full scale).

Parameters Flap Rudder Gate Rudder

SR 100% 157%

meanV0 (ship) 0.40 1.00

CF (ship) 0.00281 0.0026

CRD (ship) 0.0080 0.0068

% of ship resistance 0.2 1.7
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As shown in Tables 2 and 3 and Figure 5, it is evident that the drag components of the two rudder
cases are somewhat contrasting; the model scale drag of the gate rudder is six to eight times that of
the conventional rudder, and both rudder drag components are decreased in full scale by a factor of
one-third to one-quarter. Therefore, the scale effect of the gate rudder is relatively more significant as
compared with that of the conventional rudder and the difference between the model and full-scale
drag components of the gate rudder is 3.6% (5.3% minus 1.7%) of the ship resistance while it is only
0.6% (0.8% minus 0.2%) for the conventional rudder case. It is rather fortunate that the difference is six
times, thanks to the flow speed difference around the rudder blades at each towing condition.

2.3. Rudder Drag Correction for the Scale Effect

As explained in Section 2.2, rudder drag cannot be measured directly during the resistance test of
a hull with the gate rudder. This is because the blades of the gate rudder produce the lift force, and
hence compensate for the rudder drag while a conventional rudder is simply a drag source contributing
to the ship resistance. However, if we can measure the two rudder force components, FRX and FRY,
in the ship fixed coordinate system, we can configure the rudder drag and lift components based on
several assumptions within the wing theory. Hence, one can describe the lift coefficient as follows:

CL = κ
(
α+ αg

)
(5)

where CL is the lift coefficient, α and αg are attack angle and zero lift angle, respectively, and κ is the
lift slope correction factor.

However, the rudder drag coefficient, CRD, and angle of attack, α, can be estimated by the
following equations;

CRD =
F′Y −CL [1−

(
α+ αg

)2
]
0.5

α+ αg
(6)

α =

(
κ+ F′X

)
−

√
(κ+ FX′)

2 + 2FY′2

−F′Y
− αg (7)

where, FX′ and FY′ is nondimensional rudder force of FRX and FRY, respectively and given by Equations
(8) and (9) as follows:

FX′ =
FRX

1
2ρVS2SR

(8)

FY′ =
FRY

1
2ρVS2SR

(9)

We can observe a positive flow angle, α, for every kind of vessel when the rudder blades are
off-centered, as sketched in Figure 6.

The lift slope correction factor, κ, can be expressed by Equation (10) as follows:

κ = ε
6.13λ

2.25 + λ
(10)

where λ is the aspect of ratio, ε is the effect of low Reynolds number on the lift slope which will be
explained in Section 2.4. CL and CD can be obtained from the measured FX and FY during the resistance
test directly.
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If we can express the rudder drag coefficient by Equation (11) which is combined with the drag
coefficient CRD0 explained earlier:

CRD = CRD0 + δCRD (11)

where δCRD represents the additional resistance due to the rudder stock. Conservatively, we can use
this additional resistance component without correction (i.e., no scale effect) such as wave resistance.
Hence the effect on the rudder resistance:

δFRX =
1
2
ρVS

2δCRD0SRcosα (12)

δCRD0 = CRD0S −CRD0M (13)

Figure 7 shows the difference between the obtained CRD and calculated CRD0 (model). The δCRD0
is less than 1% of the total hull resistance, and the effect of this additional uncertain resistance on the
full-scale performance is not as significant based on this figure.
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2.4. Rudder Lift Correction for the Scale Effect

The lift coefficient of the gate rudder is also influenced by the model scale effect, and hence
requires correction of the model test data. For this correction, the wind tunnel test data of NACA0012
section in low Reynolds numbers with the nonlinear lift slope curves are used, as shown in Figure 8
from McCormick (1995) [8].
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From Figure 8, the lift coefficient of the full-scale rudder (CLS) can be estimated by using Equation
(14) in conjunction with Equations (5) and (10) as follows:

ε =
1.470XM

3
− 3.109XM

2 + 2.376XM + 1.036
1.470XS3 − 3.109XS2 + 2.376XS + 1.036

(14)

if RNS > 8 × 106, XS = 8 × 106

where
XM = RNM × 10−7XS = RNS × 10−7

Figure 9 also shows the Reynolds number effect on the lift coefficients of other typical NACA
wing sections presented by the same study [8].
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In order to show the significance of the resultant forces acting on the rudder in the model and
full scale, which are evaluated earlier, Figure 10 is included. As shown in Figure 10, the effects of the
rudder drag and lift correction on the gate rudder performance are rather significant, and therefore
this phenomena explains the discrepancy between the model test and the full-scale results. In the
Shigenobu case, two rudder blades seem to be generating a thrust of almost more than 10%. Therefore,
the earlier derived two corrections are essential to assess the actual performance of the gate rudder
system, which need to be implemented in the powering performance prediction and is discussed in
Section 4.
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3. Verification of Scale Effect Correction by Model Tests

In this section, the earlier proposed scale effect correction procedure is verified by the lift and
drag coefficients of the gate rudder blades for two cargo ship models of different scales (2.0 m and 6.18
m long models). The verification is based on the data obtained from the resistance and self-propulsion
tests of these models. Table 4 shows the principal dimensions of the cargo ship and its model size,
and Figure 11 shows one of the models (6.18 m). Here, Lpp is the length between perpendiculars (m),
B is the beam (m), d is the draft (m), and DP is the propeller diameter (m). Table 5 presents the test
conditions of the two models.

Table 4. Principal dimensions of ship and models.

Cargo Ship Particulars

Lpp (m) 69.0

B (m) 12.0

d (m) 4.11

DP (m) 2.3

Model Size (m) 6.18/2.00

Table 5. Model tests conducted with two scaled models.

Kind of Test 2.0 m Model 6.18 m Model

Resistance with rudder with rudder

Self-propulsion with rudder with rudder

Rudder force I zero helm zero helm

Rudder force II −15 deg to +15 deg −9 deg to + deg
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From the model tests conducted, as shown in Table 5, the following verification data can be
obtained:

(1) Scale effect on the rudder drag and lift during towing conditions;
(2) Scale effect on the rudder drag and lift during self-propelled conditions;
(3) Scale effect on the rudder normal force during steering conditions.

The verification data were calculated and are presented in Figure 12 in terms of the nondimensional
drag and lift coefficients, (i.e., CDR and CL) of the rudders, as described earlier, using Equations (11)
and (5), respectively. As shown in Figure 12, the proposed procedure shows good agreement with the
two different scale model test data.
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4. Enhanced Procedure for Powering Performance Prediction

Having established the scale-effect correction procedure in Section 2 and verified it with the model
test data as described in Section 3, these corrections are introduced in the analysis of the resistance and
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self-propulsion test data to predict the powering performance of a ship with the gate rudder system in
full scale as described in the following sections.

4.1. Effective Power

The effective horsepower (EHP) of a ship can be calculated based on the improved total resistance
of the model by taking into account the scale effect correction on the rudder drag and rudder lift
coefficients. Hence,

EHP = RTS VS (15)

RTS = CTS0.5ρVS
2S (16)

where CTS is the total resistance coefficient of the ship and is estimated based on the total model
resistance coefficient according to the standard procedure, such as a recommended by the ITTC
standard procedure.

Now, the total model resistance coefficient can be represented as:

CTM =
RTM + δFRD cosα+ δFRLsinα

0.5ρV2SR
(17)

4.2. Thrust Deduction Factor

The scale effect correction on the thrust deduction factor to be obtained from the self-propulsion
tests can be included by introducing the drag and lift correction on the rudder blades, as described in
Sections 2.3 and 2.4, and implemented in Equation (18):

1− t =
RTM − F

T + δFRD cosα+ δFRLsinα
(18)

4.3. Effective Wake

The effective wake of the GRS is the most difficult item to analyze since the propeller advance
speed is also accelerated by the gate rudder blades and this effect is not be considered as an integral
part of the effective wake, since the effective wake, by definition, is originated from the boundary layer
deformation due to a propeller’s suction effect as the function of the propeller’s thrust. Therefore, the
actual effective wake of the GRS is less than that of a conventional rudder system because the propeller
thrust is smaller than that of the conventional configuration.

Bearing in mind the above fact, to define the wake fraction of the gate rudder system, we need the
mean flow speed at the propeller plane that can be represented in the nondimensional form, vP, at the
propeller plane of the gate rudder system, as in Equation (19):

vP = C1vA0 + vinP + vinR (19)

where vA0, vinP and vinR are the propeller advance speed of the conventional rudder case, the propeller
self-induced velocity, and the rudder induced velocity, respectively.

C1 is a correction factor of the wake variation to account for the difference in the propeller diameter
and the position and recommended value for this C1 is <1.0 because of the smaller propeller diameter,
and hence the resulting thrust of the gate rudder propeller as compared with the conventional type.

Then, the wake fraction for the gate rudder can be written as follows:

wGR = C1 ∗ (w0 − 0.04) + winR (20)

where, winR is the rudder induced wake, as described earlier and its mean value can be estimated by
the following formula:

winR = C2 ∗CT + w0R (21)
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where C2 is the correction factor for the thrust loading.
In Figure 13, a schematic representation of the scale effect for the gate rudder system is represented

in comparison with the conventional rudder case. As shown in this figure, the dotted line presents
the scale effect of a conventional rudder case, whereas the solid line shows the gate rudder case,
respectively. One should also note in Figure 13 that, while point A’ can be predicted from point A by
using the ITTC recommended procedure, point B’ cannot be predicted from point B which can be
sometimes smaller, as shown in Figure 9, since point B’ does not follow the same principle.
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Having represented the effective wake for the gate rudder system, Figure 14 is included to
present the analysis results for Shigenobu (with GRS) and Sakura (with CRS-flap rudder) based on
their respective sea trials and including the predicted results using the earlier described scale effects
correction procedure.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 13 of 16 

 

rudder case, respectively. One should also note in Figure 13 that, while point A’ can be predicted 
from point A by using the ITTC recommended procedure, point B’ cannot be predicted from point B 
which can be sometimes smaller, as shown in Figure 9, since point B’ does not follow the same 
principle. 

 
Figure 13. Schematic diagram of the scale effect of the wake of a gate rudder propulsion system. 

Having represented the effective wake for the gate rudder system, Figure 14 is included to 
present the analysis results for Shigenobu (with GRS) and Sakura (with CRS-flap rudder) based on 
their respective sea trials and including the predicted results using the earlier described scale effects 
correction procedure. 

 
Figure 14. Effect of drag and lift correction on predicted and measured (speed trials) effective wake. 

4.4. Powering Performance Prediction 

In order to present an enhanced procedure for the powering performance prediction of a ship 
with the GRS, including the earlier described scale effect corrections, an algorithm is presented in 
Figure 15 in terms of a flow chart. 

Figure 14. Effect of drag and lift correction on predicted and measured (speed trials) effective wake.

4.4. Powering Performance Prediction

In order to present an enhanced procedure for the powering performance prediction of a ship
with the GRS, including the earlier described scale effect corrections, an algorithm is presented in
Figure 15 in terms of a flow chart.

Finally, the above-described procedure is applied to predict powering performance of the
Shigenobu (GRS), and results are shown in Figure 16 as compared with the prediction results for the
Sakura (CRS) and including the trials data for both ships [9]. As one can see in Figure 16, the predicted
power for Shigenobu is in excellent agreement with the trials data and, hence, justify the scale effect
corrections applied on the gate rudder drag and lift characteristics.
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Figure 16. Comparison of trial power predictions for two ships using the ITTC and enhanced method
for the gate rudder system.

It should be noted that the full-scale effective wake is estimated from the model test, and the same
figures are used for the power prediction (weS = weM).

5. Conclusions

This study explored the scaling effect issues associated with the powering performance prediction
of a ship fitted with a gate rudder system (GRS). The study aimed to take a further step towards
a realistic estimation of the powering performance of ships with a GRS. The study focused on the
corrections for the scale effects, which were believed to be associated with the drag and lift characteristics
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of the gate rudder blades due to the low Reynolds number experienced in model tests combined
with the unique arrangement of this rudder and propulsion system. On the basis of the appropriate
semi-empirical approaches and supporting model test and full-scale data, the study verified the scale
effect phenomenon and presented the associated correction procedure. Together with this, the study
also presented an enhanced procedure for the powering performance prediction of a ship driven by a
gate rudder system implementing the proposed scale effect correction.

On the basis of the above, the following conclusions are obtained:

1. Scale effect of a gate rudder system can be considerably more significant than that of the
conventional rudder system because of the unique arrangement of the gate rudder system behind
the stern;

2. Flow characteristics around a gate rudder system in model scale can be laminar due to the low
Reynolds numbers experienced, hence, the drag and lift coefficients of the gate rudder blades are
strongly affected by this unfavorable scale effect;

3. The analysis presented in this study based on the semi-empirical procedure and the supporting
data for two different models and full-scale ships clearly showed this scale effect and how to make
corrections for the drag and lift coefficients of the gate rudder blades based on the verifications
with the model test data;

4. The scale effect of the wake of a ship with a gate rudder system is not the same as that of a ship
with a conventional rudder. The measured propeller advanced speed, based on the thrust identity,
should be divided into two components, and the different scaling methods should be applied to
each component;

5. An enhanced powering performance procedure which takes into account the subject scale
effects presented in this study demonstrates excellent agreement with the full-scale trials
data. This justifies the scale effect claim on the gate rudder drag and lift characteristics, and
associated correction procedure, as well as the proposed enhanced methodology for the powering
performance prediction.

This study focused on a rapid and practical solution to the powering problem associated with a
gate rudder system. However, this study would greatly benefit from further in-depth studies involving
CFD, systematic model tests, and full-scale trials which are underway with the increasing applications
of this new attractive energy-saving device, Tacar et al. (2019) [10].
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